Bkis phát hiện nguồn gốc vụ tấn công website Mỹ, Hàn

TTO – Chiều 14-7, ông Nguyễn Minh Đức, Giám đốc Bkis Security, khẳng định, nguồn gốc các vụ tấn công vào các hệ thống website chính phủ của Mỹ và Hàn Quốc thời gian vừa qua xuất phát từ nước Anh.

Sơ đồ hệ thống botnet tấn công DDoS vào website chính phủ Hàn Quốc và Mỹ

Continue reading

Microsoft lại “bon chen” với phần mềm diệt virus miễn phí

(Dân trí) – Sau khi thất bại với dự án phần mềm diệt virus One Care, hãng phần mềm Mỹ lại chuẩn bị tung ra thị trường dịch vụ diệt virus miễn phí có tên mã Morro dành cho máy tính cá nhân.

Microsoft “ăn thua” với Symantec và McAfee?

Microsoft hứa hẹn sản phẩm của hãng sẽ cạnh tranh với đối thủ Symantec và McAfee. Phát ngôn viên của gã khổng lồ này cho hay hiện hãng đang cho các nhân viên thử nghiệm phiên bản đầu tiên. Bản beta sẽ sớm đuợc trình làng nhưng lộ trình chính xác chưa được tiết lộ. Continue reading

Tổng hợp các tài liệu Cryptography – thuật toán mã hóa

Cryptography (hay crypto) – mật mã học – ngành khoa học nghiên cứu về việc giấu thông tin. Cụ thể hơn, mật mã học là ngành học nghiên cứu về những cách chuyển đổi thông tin từ dạng “có thể hiểu được” thành dạng “không thể hiểu được” và ngược lại. Cryptography giúp đảm bảo những tính chất sau cho thông tin:

• Tính bí mật (confidentiality): thông tin chỉ được tiết lộ cho những ai được phép.

• Tính toàn vẹn (integrity): thông tin không thể bị thay đổi mà không bị phát hiện.

• Tính xác thực (authentication): người gửi (hoặc người nhận) có thể chứng minh đúng họ.

• Tính không chối bỏ (non-repudiation): người gửi hoặc nhận sau này không thể chối bỏ việc đã gửi hoặc nhận thông tin.

Mật mã có rất nhiều ứng dụng trong thực tế như bảo vệ giao dịch tài chính (rút tiền ngân hàng, mua bán qua mạng), bảo vệ bí mật cá nhân… Nếu kẻ tấn công đã vượt qua tường lửa và các hệ thống bảo vệ khác thì mật mã chính là hàng phòng thủ cuối cùng cho dữ liệu của bạn.

Cần phân biệt khái niệm cryptography với khái niệm steganography (tạm dịch là giấu thông tin). Điểm khác nhau căn bản nhất giữa hai khái niệm này là: cryptography là việc giấu nội dung của thông tin, trong khi steganography là việc giấu sự tồn tại của thông tin đó.

Cryptosystem (viết tắt của cryptographic system): hệ thống mã hóa thông tin, có thể là phần mềm như PGP, Ax-Crypt, Truecrypt… giao thức như SSL, IPsec… hay đơn giản là một thuật toán như DES.

Encrypt (encipher): mã hóa – quá trình biến đổi thông tin từ dạng ban đầu – có thể hiểu được thành dạng không thể hiểu được, với mục đích giữ bí mật thông tin đó.

Decrypt (decipher): giải mã – quá trình ngược lại với mã hóa, khôi phục lại thông tin ban đầu từ thông tin đã được mã hóa.

Plaintext (cleartext): dữ liệu gốc (chưa được mã hóa).

Ciphertext: dữ liệu đã được mã hóa.

Lưu ý: từ text (hay message) ở đây được dùng theo quy ước, được hiểu là tất cả những dữ liệu được mã hóa (hay giải mã) chứ không chỉ là văn bản chữ như nghĩa thông thường. Khi dịch ra tiếng Việt, từ “văn bản” và từ “thông điệp” cũng tuân theo quy ước tương tự.

Cipher (hay cypher): thuật toán dùng để thực hiện quá trình mã hóa hay giải mã. Trong khuôn khổ bài viết này gọi tắt là thuật toán.

Key: chìa khóa – thông tin dùng cho qui trình mã hóa và giải mã.

Code: cần phân biệt code trong mật mã học với code trong lập trình hay code trong Zip code… Trong cryptography, code (mã) có ý nghĩa gần như là cipher (thuật toán). Chúng chỉ khác nhau ở chỗ: code biến đổi thông tin ở tầng nghĩa (từ, cụm từ) còn cipher biến đổi thông tin ở tầng thấp hơn, ví dụ chữ cái (hoặc cụm chữ cái) đối với các thuật toán cổ điển hay từng bit (hoặc nhóm bit) đối với các thuật toán hiện đại.

Cryptanalysis: nếu coi mật mã học là việc cất dữ liệu của bạn vào một cái hộp sau đó dùng chìa khóa khóa lại, thì cryptanalysis là ngành nghiên cứu những phương pháp mở hộp để xem dữ liệu khi không có chìa khóa.

KHÁI NIỆM VỀ CHÌA KHÓA

Password: mật khẩu, là một hay nhiều từ mà người dùng phải biết để được cấp quyền truy cập.

Trong thực tế, mật khẩu do người dùng tạo ra thường không đủ độ an toàn để được dùng trực tiếp trong thuật toán. Vì vậy, trong bất cứ hệ thống mã hóa dữ liệu nghiêm túc nào cũng phải có bước chuyển đổi mật khẩu ban đầu thành chìa khóa có độ an toàn thích hợp. Bước tạo chìa khóa này thường được gọi là key derivation, key stretching hay key initialization.

Key Derivation Function: là một hàm hash (sẽ giải thích rõ hơn ở phần sau) được thiết kế sao cho chìa an toàn hơn đối với tấn công kiểu brute-force hay cổ điển. Hàm này được thực hiện lại nhiều lần trên mật khẩu ban đầu cùng với một số ngẫu nhiên để tạo ra một chìa khóa có độ an toàn cao hơn. Số ngẫu nhiên này gọi là salt, còn số lần lặp lại là iteration.

Ví dụ một mật khẩu là “pandoras B0x”, cùng với salt là “230391827”, đi qua hàm hash SHA-1 1000 lần cho kết quả là một chìa khóa có độ dài 160 bit như sau: 3BD454A72E0E7CD6959DE0580E3C19F51601C359 (thể hiện dưới dạng số thập lục phân).

Keylength (Keysize): Độ dài (hay độ lớn) của chìa khóa. Nói một chìa khóa có độ dài 128 bit có nghĩa chìa đó là một số nhị phân có độ dài 128 chữ số. Một thuật toán có chìa khóa càng dài thì càng có nhiều khả năng chống lại tấn công kiểu brute-force.

THUẬT TOÁN MÃ HÓA

Cổ điển

• Substitution: thay thế – phương pháp mã hóa trong đó từng kí tự (hoặc từng nhóm kí tự) của văn bản ban đầu được thay thế bằng một (hay một nhóm) kí tự khác. Tuy không còn được sử dụng nhưng ý tưởng của phương pháp này vẫn được tiếp tục trong những thuật toán hiện đại.

• Transposition: hoán vị – phương pháp mã hóa trong đó các kí tự trong văn bản ban đầu chỉ thay đổi vị trí cho nhau còn bản thân các kí tự không hề bị biến đổi.

Hiện đại

• Symmetric cryptography: mã hóa đối xứng, tức là cả hai quá trình mã hóa và giải mã đều dùng một chìa khóa. Để đảm bảo tính an toàn, chìa khóa này phải được giữ bí mật. Vì thế các thuật toán loại này còn có tên gọi khác là secret key cryptography (hay private key cryptography), tức là thuật toán mã hóa dùng chìa khóa riêng (hay bí mật). Các thuật toán loại này lý tưởng cho mục đích mã hóa dữ liệu của cá nhân hay tổ chức đơn lẻ nhưng bộc lộ hạn chế khi thông tin đó phải được chia sẻ với một bên thứ hai.

Giả sử nếu Alice chỉ gửi thông điệp đã mã hóa cho Bob mà không hề báo trước về thuật toán sử dụng, Bob sẽ chẳng hiểu Alice muốn nói gì. Vì thế bắt buộc Alice phải thông báo cho Bob về chìa khóa và thuật toán sử dụng tại một thời điểm nào đó trước đấy. Alice có thể làm điều này một cách trực tiếp (mặt đối mặt) hay gián tiếp (gửi qua email, tin nhắn…). Điều này dẫn tới khả năng bị người thứ ba xem trộm chìa khóa và có thể giải mã được thông điệp Alice mã hóa gửi cho Bob.

Mã hóa đối xứng có thể phân thành hai nhóm phụ:

– Block ciphers: thuật toán khối – trong đó từng khối dữ liệu trong văn bản ban đầu được thay thế bằng một khối dữ liệu khác có cùng độ dài. Độ dài mỗi khối gọi là block size, thường được tính bằng đơn vị bit. Ví dụ thuật toán 3-Way có kích thước khối bằng 96 bit.

– Stream ciphers: thuật toán dòng – trong đó dữ liệu đầu vào được mã hóa từng bit một. Các thuật toán dòng có tốc độ nhanh hơn các thuật toán khối, được dùng khi khối lượng dữ liệu cần mã hóa chưa được biết trước, ví dụ trong kết nối không dây. Có thể coi thuật toán dòng là thuật toán khối với kích thước mỗi khối là 1 bit.

• Asymmetric cryptography: mã hóa bất đối xứng, sử dụng một cặp chìa khóa có liên quan với nhau về mặt toán học, một chìa công khai dùng để mã hoá (public key) và một chìa bí mật dùng để giải mã (private key). Một thông điệp sau khi được mã hóa bởi chìa công khai sẽ chỉ có thể được giải mã với chìa bí mật tương ứng. Do các thuật toán loại này sử dụng một chìa khóa công khai (không bí mật) nên còn có tên gọi khác là public-key cryptography (thuật toán mã hóa dùng chìa khóa công khai).

Quay lại với Alice và Bob, nếu Alice muốn gửi một thông điệp bí mật tới Bob, cô ta sẽ tìm chìa công khai của Bob. Sau khi kiểm tra chắc chắn chìa khóa đó chính là của Bob chứ không của ai khác (thông qua chứng chỉ điện tử – digital certificate), Alice dùng nó để mã hóa thông điệp của mình và gửi tới Bob. Khi Bob nhận được bức thông điệp đã mã hóa anh ta sẽ dùng chìa bí mật của mình để giải mã nó. Nếu giải mã thành công thì bức thông điệp đó đúng là dành cho Bob. Alice và Bob trong trường hợp này có thể là hai người chưa từng quen biết. Một hệ thống như vậy cho phép hai người thực hiện được giao dịch trong khi không chia sẻ trước một thông tin bí mật nào cả.

Một trong những hạn chế của các thuật toán mã hóa bất đối xứng là tốc độ chậm, do đó trong thực tế người ta thường sử dụng một hệ thống lai tạp trong đó dữ liệu được mã hóa bởi một thuật toán đối xứng, chỉ có chìa dùng để thực hiện việc mã hóa này mới được mã hóa bằng thuật toán bất đối xứng.

MỘT SỐ PHƯƠNG PHÁP TẤN CÔNG HỆ THỐNG THÔNG TIN MÃ HÓA
Bất cứ ai cũng có thể tạo ra một hệ thống thông tin mã hóa cho riêng mình. Nhưng để có một hệ thống an toàn và hiệu quả đòi hỏi người thiết kế phải có kiến thức toán học sâu sắc, có kinh nghiệm về bảo mật và am hiểu các phương pháp tấn công. • Brute-force attack (exhaustive key search): phương pháp tấn công bằng cách thử tất cả những chìa khóa có thể có. Đây là phương pháp tấn công thô sơ nhất và cũng khó khăn nhất.
Theo lý thuyết, tất cả các thuật toán hiện đại đều có thể bị đánh bại bởi brute-force nhưng trong thực tiễn việc này chỉ có thể thực hiện được trong thời gian hàng triệu, thậm chí hàng tỉ năm. Vì thế có thể coi một thuật toán là an toàn nếu như không còn cách nào khác để tấn công nó dễ hơn là brute-force.

Ví dụ: Thuật toán DES có độ dài chìa khóa là 56 bit tức là có tổng cộng tất cả 256 chìa để dùng. Nếu ai đó muốn “bẻ khoá” DES bằng cách thử hàng loạt chìa (brute-force attack) thì sẽ phải thử đến 256 lần (khoảng hơn 70 triệu tỉ lần).

• Frequency analysis: thống kê tần suất, chỉ có thể áp dụng được đối với các thuật toán cổ điển dùng phương pháp thay thế, ví dụ phương pháp Caesar. Để thực hiện phương pháp này ta cần một lượng văn bản đã mã hóa đủ lớn để phép thống kê được chính xác. Ngoài ra còn phải biết ngôn ngữ sử dụng trong văn bản ban đầu, nếu văn bản ban đầu là tiếng Anh thì nhiều khả năng kí tự xuất hiện nhiều nhất trong văn bản đã mã hóa là do chữ e mã hóa thành, kí tự nhiều thứ nhì bắt nguồn từ chữ a…

• Differential cryptanalysis: Eli Biham và Adi Shamir tìm ra phương pháp này vào khoảng cuối những năm 1980; nó thường được sử dụng để tấn công các thuật toán khối (block cipher – sẽ nói rõ hơn ở phần sau). Phương pháp này dựa trên việc phân tích những biến đổi của hai văn bản gốc có liên quan khi được mã hóa bởi cùng một chìa.
Còn rất nhiều phương pháp khác như Mod-n cryptanalysis, Linear cryptanalysis, Birthday attack, Algebraic attack… mà bất cứ ai thiết kế hệ thống mã hóa cũng phải chú ý tới.

Một số thuật toán nổi tiếng

• One-time Pad (OTP): xuất hiện từ đầu thế kỉ 20 và còn có tên gọi khác là Vernam Cipher, OTP được mệnh danh là cái chén thánh của ngành mã hóa dữ liệu. OTP là thuật toán duy nhất chứng minh được về lý thuyết là không thể phá được ngay cả với tài nguyên vô tận (tức là có thể chống lại kiểu tấn công brute-force). Để có thể đạt được mức độ bảo mật của OTP, tất cả những điều kiện sau phải được thỏa mãn:

– Độ dài của chìa khóa phải đúng bằng độ dài văn bản cần mã hóa.

– Chìa khóa chỉ được dùng một lần.

– Chìa khóa phải là một số ngẫu nhiên thực.

Mới nghe qua có vẻ đơn giản nhưng trong thực tế những điều kiện này khó có thể thỏa mãn được. Giả sử Alice muốn mã hóa chỉ 10MB dữ liệu bằng OTP, cô ta phải cần một chìa khóa có độ dài 10MB. Để tạo ra một số ngẫu nhiên lớn như vậy Alice cần một bộ tạo số ngẫu nhiên thực (TRNG – True Random Number Generator). Các thiết bị này sử dụng nguồn ngẫu nhiên vật lý như sự phân rã hạt nhân hay bức xạ nền vũ trụ. Hơn nữa việc lưu trữ, chuyển giao và bảo vệ một chìa khóa như vậy cũng hết sức khó khăn.

Dễ dàng hơn, Alice cũng có thể dùng một bộ tạo số ngẫu nhiên ảo (PRNG – Pseudo Random Number Generator) nhưng khi đó mức độ bảo mật giảm xuống gần bằng zero hay cùng lắm chỉ tương đương với một thuật toán dòng như RC4 mà thôi.

Do có những khó khăn như vậy nên việc sử dụng OTP trong thực tế là không khả thi.

• DES: viết tắt của Data Encryption Standard. DES là một thuật toán khối với kích thước khối 64 bit và kích thước chìa 56 bit. Tiền thân của nó là Lucifer, một thuật toán do IBM phát triển. Cuối năm 1976, DES được chọn làm chuẩn mã hóa dữ liệu của nước Mỹ, sau đó được sử dụng rộng rãi trên toàn thế giới. DES cùng với mã hóa bất đối xứng đã mở ra một thời kì mới cho ngành mã hóa thông tin. Trước DES, việc nghiên cứu và sử dụng mã hóa dữ liệu chỉ giới hạn trong chính phủ và quân đội. Từ khi có DES, các sản phẩm sử dụng nó tràn ngập thị trường. Đồng thời, việc nghiên cứu mã hóa thông tin cũng không còn là bí mật nữa mà đã trở thành một ngành khoa học máy tính bình thường.

Trong khoảng 20 năm sau đó, DES đã trải qua nhiều khảo sát, phân tích kỹ lưỡng và được công nhận là an toàn đối với các dạng tấn công (tất nhiên, ngoại trừ brute-force).

Tới tháng 7 năm 1998, EFF (Electronic Frontier Foundation) đã “brute-force” thành công DES trong 56 giờ. Ít lâu sau đó cùng với mạng tính toán ngang hàng Distribute.net, tổ chức này đã lập nên kỉ lục mới là 22 giờ 15 phút. Sự kiện này chứng tỏ cỡ chìa 56 bit của DES đã lỗi thời và cần được thay thế.

• AES: viết tắt của Advance Encryption Standard. Tháng 12 năm 1997, viện tiêu chuẩn và công nghệ Mỹ (NIST – National Institute of Standard and Technology) kêu gọi phát triển một thuật toán mới thay thế cho 3DES (một biến thể an toàn hơn của DES với chìa khóa dài 112 bit). Thuật toán được chọn phải là thuật toán khối có kích thước khối là 128 bit, hỗ trợ chìa khóa có kích thước 128 bit, 192 bit và 256 bit.

15 thuật toán được gửi đến từ nhiều nơi trên thế giới, 5 thuật toán lọt vào vòng hai: Rijndael, Twofish, Serpent, RC6 và MARS. Tháng 11 năm 2001, Rijndael đuợc chọn làm AES (một phần nhờ có tốc độ nhanh hơn so với các đối thủ), chính thức thay thế DES trong vai trò chuẩn mã hóa dữ liệu.

• RSA: là một thuật toán mã hóa bất đối xứng được sử dụng rất rộng rãi trong giao dịch điện tử. Cái tên RSA có nguồn gốc từ ba chữ cái đầu của tên ba người đồng thiết kế ra nó: Ronald Rivest, Adi Shamir và Leonard Adleman.

Ngoài ra còn nhiều thuật toán khác nhưng do khuôn khổ bài viết có hạn nên không thể đi sâu, mà chỉ liệt kê một số thuật toán thông dụng:

Các thuật toán đối xứng:

• Thuật toán dòng: RC4, A5/1, A5/2, Chameleon…

• Thuật toán khối: 3DES, RC5, RC6, 3-Way, CAST, Camelia, Blowfish, MARS, Serpent, Twofish, GOST…

Các thuật toán bất đối xứng: Elliptic Curve, ElGamal, Diffie Hellman…

HÀM HASH

Hàm hash (hash function) là hàm một chiều mà nếu đưa một lượng dữ liệu bất kì qua hàm này sẽ cho ra một chuỗi có độ dài cố định ở đầu ra.

Ví dụ, từ “Illuminatus” đi qua hàm SHA-1 cho kết quả E783A3AE2ACDD7DBA5E1FA0269CBC58D.

Ta chỉ cần đổi “Illuminatus” thành “Illuminati” (chuyển “us” thành “i”) kết quả sẽ trở nên hoàn toàn khác (nhưng vẫn có độ dài cố định là 160 bit) A766F44DDEA5CACC3323CE3E7D73AE82.

Hai tính chất quan trọng của hàm này là:

• Tính một chiều: không thể suy ra dữ liệu ban đầu từ kết quả, điều này tương tự như việc bạn không thể chỉ dựa vào một dấu vân tay lạ mà suy ra ai là chủ của nó được.
• Tính duy nhất: xác suất để có một vụ va chạm (hash collision), tức là hai thông điệp khác nhau có cùng một kết quả hash, là cực kì nhỏ.

Một số ứng dụng của hàm hash:

• Chống và phát hiện xâm nhập: chương trình chống xâm nhập so sánh giá trị hash của một file với giá trị trước đó để kiểm tra xem file đó có bị ai đó thay đổi hay không.
• Bảo vệ tính toàn vẹn của thông điệp được gửi qua mạng bằng cách kiểm tra giá trị hash của thông điệp trước và sau khi gửi nhằm phát hiện những thay đổi cho dù là nhỏ nhất.
• Tạo chìa khóa từ mật khẩu.
• Tạo chữ kí điện tử.

SHA-1 và MD5 là hai hàm hash thông dụng nhất và được sử dụng trong rất nhiều hệ thống bảo mật. Vào tháng 8 năm 2004, tại hội nghị Crypto 2004, người ta đã tìm thấy va chạm đối với MD5 và SHA-0, một phiên bản yếu hơn của hàm hash SHA-1. Không bao lâu sau đó, vào khoảng giữa tháng 2 năm 2005, một nhóm ba nhà mật mã học người Trung Quốc đã phát hiện ra một phương pháp có thể tìm thấy va chạm đối với SHA-1 chỉ trong vòng 269 bước tính toán (tức là có thể nhanh hơn brute-force vài nghìn lần).
Người dùng bình thường cũng không cần phải hoảng sợ trước những phát hiện này bởi vì ít nhất phải một vài năm nữa người ta mới có khả năng mang những kết quả đó vào trong thực tế. Tuy vậy, các chuyên gia vẫn khuyên nên bắt đầu chuyển sang các hàm hash an toàn hơn như SHA-256, SHA-384 hay SHA-512.

Thuật toán mã hoá bảo mật DES

Tóm tắt: DES là thuật toán mã hoá bảo mật được sử dụng rộng rãi nhất trên thế giới, thậm chí, đối với nhiều ngưòi DES và mã hoá bảo mật là đồng nghĩa với nhau. Bài báo này giới thiệu về thuật toán bảo mật DES và một số ứng dụng thực tế của DES.

Tác giả: Nguyễn Lê Cường

itGatevn_0009995.jpg
Data Encryption Standard (DES)

I. Mở đầu

Năm 1972, Viện tiêu chuẩn và công nghệ quốc gia Hoa kỳ (National Institute of Standards and Technology-NIST) đặt ra yêu cầu xây dựng một thuật toán mã hoá bảo mật thông tin với yêu cầu là dễ thực hiện, sử dụng được rộng rãi trong nhiều lĩnh vực và mức độ bảo mật cao. Năm 1974, IBM giới thiệu thuật toán Lucifer, thuật toán này đáp ứng hầu hết các yêu cầu của NIST. Sau một số sửa đổi, năm 1976, Lucifer được NIST công nhận là chuẩn quốc gia Hoa kỳ và được đổi tên thành Data Encryption Standard (DES).

DES là thuật toán mã hoá bảo mật được sử dụng rộng rãi nhất trên thế giới, thậm chí, đối với nhiều ngưòi DES và mã hoá bảo mật là đồng nghĩa với nhau. ở thời điểm DES ra đời ngưòi ta đã tính toán rằng việc phá được khoá mã DES là rất khó khăn, nó đòi hỏi chi phí hàng chục triệu USD và tiêu tốn khoảng thời gian rất nhiều năm. Cùng với sự phát triển của các loại máy tính và mạng máy tính có tốc độ tính toán rất cao, khoá mã DES có thể bị phá trong khoảng thời gian ngày càng ngắn với chi phí ngày càng thấp. Dù vậy việc này vẫn vượt xa khả năng của các hacker thông thường và mã hoá DES vẫn tiếp tục tồn tại trong nhiều lĩnh vực như ngân hàng, thương mại, thông tin… nhiều năm nữa đặc biệt với sự ra đời của thế hệ DES mới-“Triple DES”.

Vậy DES hoạt động như thế nào, bài báo này sẽ giới thiệu nguyên tắc làm việc của DES, một số ứng dụng cụ thể của bảo mật DES trong bảo mật thông tin trên thế giới cũng như ở nước ta xin được giới thiệu trong các bài viết sau. Kể từ khi DES ra đời, nhiều thuật toán mã hoá bảo mật khác cũng được phát triển tương tự DES hoặc dựa trên DES, một khi nắm được các nguyên tắc của DES bạn sẽ dễ dàng hiểu các thuật toán này.

Yêu cầu đặt ra nếu muốn bảo mật tốt hơn là phải tìm được một thuật toán sao cho việc thực hiện không quá phức tạp nhưng xác suất tìm ra chìa khoá bằng cách thử tất cả các trường hợp (brute-force) là rất nhỏ (số lần thử phải rất lớn).

II. Thuật toán bảo mật DES.

Về mặt khái niệm, thông thường thuật toán mã hoá DES là thuật toán mở, nghĩa là mọi người đều biết thuật toán này. Điều quan trọng nhất là chìa khoá của DES có độ dài tới 56 bit, nghĩa là số lần thử tối đa để tìm được chìa khoá lên đến 2^56, trung bình là 2^55 = 36.028.797.018.963.968 lần, một con số rất lớn!.

DES được thực hiện nhờ các phép dịch, hoán vị và các phép toán logic trên các bit. Mỗi ký tự trong bức thư hay bản tin cần mã hoá được biểu diễn bởi 2 số hexa hay 8 bít. DES mã hoá từng khối 64 bít tương đương 16 số hexa. Để thực hiện việc mã hoá DES sử dụng một chìa khoá cũng dưới dạng 16 số hexa hay 64 bít tức 8 byte, nhưng các bít thứ 8 trong các byte này bị bỏ qua trong khi mã hoá vì vậy độ lớn thực tế của chìa khoá là 56 bit. Ví dụ, ta mã hoá một bản tin hexa “0123456789ABCDEF” với chìa khoá là “5A5A5A5A5A5A5A5A” thì kết quả là “72AAE3B3D6916E92”. Nếu kết quả này được giải mã với cùng chìa khoá “5A5A5A5A5A5A5A5A” thì ta sẽ thu lại được đúng bản tin “0123456789ABCDEF”.

DES bao gồm 16 vòng, nghĩa là thuật toán chính được lặp lại 16 lần để tạo ra bản tin được mã hoá.

Sau đây chúng tôi sẽ trình bày quy trình của thuật toán DES.

Chuẩn bị chìa khoá:

Bước đầu tiên là chuyển 64 bit chìa khoá qua một bảng hoán vị gọi là Permuted Choice hay PC-1 để thu được chìa khoá mới có 56 bit.

Sau khi vệc chuẩn bị chìa khoá và dữ liệu mã hoá hoàn thành, thực hiện mã hoá bằng thuật toán DES. Đầu tiên, khối dữ liệu đầu vào 64 bit được chia thành hai nửa, L và R. L gồm 32 bit bên trái và R gồm 32 bit bên phải. Quá trình sau đây được lặp lại 16 lần tạo thành 16 vòng của DES gồm 16 cặp L[0]-L[15] và R[0]-R[15]:

1. R[r-1]- ở đây r là số vòng, bắt đầu từ 1- được lấy và cho qua bảng E (E-bit Selection Table), bảng này giống như một bảng hoán vị, có điều là một số bit được dùng hơn một lần do vậy nó sẽ mở rộng R[r-1] từ 32 bit lên 48 bit để chuẩn bị cho bước tiếp theo.

2. 48 bit R[r-1] được XOR với K[r] và được lưu trong bộ nhớ đệm, vì vậy R[r-1] không thay đổi.

3. Kết quả của bước trước lại được chia thành 8 đoạn, mỗi đoạn 6 bit, từ B[1] đến B[8]. Những đoạn này tạo thành chỉ số cho các bảng S (Substitution) được sử dụng ở bước tiếp theo. Các bảng S, là một bộ 8 bảng (S[1]-S[8]) 4 hàng, 16 cột. Các số trong bảng có độ dài 4 bit vì vậy có giá trị từ 0 đến 15.

4. Bắt đầu từ B[1], bit đầu và cuối của khối 6 bit được lấy ra và sử dụng làm chỉ số hàng của bảng S[1], nó có giá trị từ 0 đến 3, và 4 bit giữa được dùng làm chỉ số cột, từ 0 đến 15. Giá trị được chỉ đến trong bảng S được lấy ra và lưu lại. Việc này được lặp lại đối với B[2] và S[2] cho đến B[8] và S[8]. Lúc này bạn có 8 số 4 bit, khi nối lại với nhau theo thứ tự thu được sẽ tạo ra một chuỗi 32 bit.

5. Kết quả của bước trước được hoán vị bit bằng bảng hoán vị P (Permutation).

6. Kết quả thu được sau khi hoán vị được XOR với L[r-1] và chuyển vào R[r]. R[r-1] được chuyển vào L[r].

7. Lúc này bạn có L[r] và R[r] mới. Bạn tiếp tục tăng r và lặp lại các bước trên cho đến khi r= 17, đIều đó có nghĩa là 16 vòng đã được thực hiện và các chìa khoá phụ K[1]-K[16] đã được sử dụng.

Khi đã có L[16] và R[16], chúng được ghép lại với nhau theo cách chúng bị tách ra (L[16] ở bên trái và R[16] ở bên phải) thành 64 bit. 64 bit này được hoán vị để tạo ra kết quả cuối cùng là dữ liệu 64 bit đã được mã hoá.

Giải mã:

Việc giải mã dùng cùng một thuật toán như việc mã hoá. Để giải mã dữ liệu đã được mã hoá, quá trình như giống như mã hoá được lăp lạI nhưng các chìa khoá phụ được dùng theo thứ tự ngược lạI từ K[16] đến K[1], nghĩa là trong bước 2 của quá trình mã hoá dữ liệu đầu vào ở trên R[r-1] sẽ được XOR với K[17-r] chứ không phảI với K[r].

Các chế độ của DES:

Thuật toán DES mã hoá đoạn tin 64 bit thành đoạn tin mã hoá 64 bit. Nếu mỗi khối 64 bit được mã hoá một cách độc lập thì ta có chế độ mã hoá ECB (Electronic Code Book). Có hai chế độ khác của mã hoá DES là CBC (Chain Block Coding) và CFB (Cipher Feedback), nó làm cho mỗi đoạn tin mã hoá 64 bit phụ thuộc vào các đoạn tin trước đó thông qua phép toán XOR.

Triple DES:

Triple-DES chính là DES với hai chìa khoá 56 bit. Cho một bản tin cần mã hoá, chìa khoá đầu tiên được dùng để mã hoá DES bản tin đó, kết quả thu được lạI được cho qua quá trình giải mã DES nhưng với chìa khoá là chìa khoá thứ hai, bản tin sau qua đã được biến đổi bằng thuật toán DES hai lần như vậy lại được mã hoá DES với một lần nữa với chìa khoá đầu tiên để ra được bản tin mã hoá cuối cùng. Quá trình mã hoá DES ba bước này được gọi là Triple-DES.

Ứng dụng của DES

DES thường được dùng để mã hoá bảo mật các thông tin trong quá trình truyền tin cũng như lưu trữ thông tin. Một ứng dụng quan trọng khác của DES là kiểm tra tính xác thực của mật khẩu truy nhập vào một hệ thống (hệ thống quản lý bán hàng, quản lý thiết bị viễn thông…), hay tạo và kiểm tính hợp lệ của một mã số bí mật (thẻ internet, thẻ điện thoại di động trả trước), hoặc của một thẻ thông minh (thẻ tín dụng, thẻ payphone…).

Phá khóa DES

Năm 1998, một nhóm nghiên cứu đã chi phí 220.000USD để chế tạo một thiết bị có thể thử toàn bộ số chìa khoá DES 56 bit trong trung bình 4,5 ngày. Tháng 7 năm 1998 họ thông báo đã phá chìa khoá DES trong 56 giờ. Thiết bị này gọi là Deep Crack gồm 27 board mạch, mỗi board chứa 64 chip và có khả năng thử 90 tỷ chìa khoá trong một giây.

Tuy nhiên, việc phá khóa Triple DES là điều rất khó khăn, một chuyên gia về bảo mật đã cho rằng ” Không có đủ silic trong giải ngân hà (để chế tạo chip-TG) cũng như không đủ thời gian trước khi mặt trời bị phá huỷ để phá khoá Triple DES”.

III. Kết luận

Không thể phủ nhận là thuật toán DES có nhiều ứng dụng trong viễn thông và công nghệ thông tin, việc làm chủ và cứng hóa các thuật toán rất có ý nghĩa đối với sự an toàn trong các giao dịch trên mạng. Nhìn chung, đối với Việt Nam, việc làm chủ công nghệ cứng hóa thuật toán DES rất có ý nghĩa trong việc đảm bảo an toàn giao dịch trên mạng, đảm bảo an toàn trong truyền tin cho các đơn vị cơ yếu tại Việt Nam. Hiện nay, chúng tôi đang triển khai cứng hóa thuật toán DES nhờ các công nghệ thiết kế số hiện đại, các chương trình và mạch phần cứng sẽ được chúng tôi đề cập đến trong các bài báo tiếp theo.

Giới thiệu về các thuật toán mã hóa

Giới thiệu về các thuật toán mã hóaTrong bài viết này tôi giới thiệu với các bạn sự khác nhau giữa các thuật toán mã hoá. Phần đầu tiên giới thiệu ba phương thức mã hoá: hashing, symmetric, asymmetric. Trong các bài viết tiếp theo tôi sẽ lần lượt trình bày về nhiều vấn đề và cách sử dụng các phương thức mã hoá đó.

Thông tin quan trọng

Các thuật toán mã hoá được chia làm ba dạng cơ bản đó là: Hashing (hàm băm), mật mã symmetric (đối xứng), và mật mã asymmetric (bất đối xứng). Hashing được giới thiệu như một dạng ID số. Hai phương thức tiếp theo là symmetric và asymmetric là quá trình mã hoá và giải mã. Bạn muốn hiểu về chúng trước tiên hãy xem các khái niệm và ví dụ dưới đây.

1. Hashing – Hàm Băm

Hashing là một phương thức mật mã nhưng nó không phải là một thuật toán mã hoá. Đúng như vậy, hashing chỉ sử dụng một chứng chỉ số duy nhất được biết đến với tên như “hash value – giá trị hash”, “hash – băm”, Message Authentication Code (MAC), fingerprint – vân tay, hay một đoạn message. Dữ liệu đầu vào của bạn có thể là một file, một ổ đĩa một quá trình truyền thong tin trên mạng, hay một bức thư điện tử. Thông số hash value được sử dụng để phát hiện khi có sự thay đổi của tài nguyên. Nói cách khác, hashing sử dụng nó để phát hiện ra dữ liệu có toàn vẹn trong quá trình lưu trữ hay trong khi truyền hay không.

Ví dụ, thông số hash value được tính toán để so sánh với thông số hash value được tạo ra trước đó một tuần. Nếu hai thông số giống nhau thì dữ liệu chưa có sự thay đổi. Nếu hai thông số có sự khác nhau, thì dữ liệu đã bị thay đổi. Trong hình dưới đây thể hiện cơ bản về hash hay thong số MAC.

Thông số MAC value được tính toán bởi người gửi (sender) và người nhận (receive) với cùng một thuật toán.

thuat toan ma hoa

Không như các phương thức mật mã khác, chúng sẽ làm thay đổi dữ liệu thành một dạng mật mã, quá trình hashing sử dụng một thông số hash value và không thay đổi dữ liệu ban đầu. Bởi vì các tính năng đặc biệt, hashing có thể sử dụng để bảo vệ và kiểm tra tính toàn vẹn của dữ liệu. Nó cũng có khả năng sử dụng để kiểm tra khi có một tiến trình copy được thực hiện và đảm bảo tính chính xác của dữ liệu khi chúng được copy.

Ví dụ, khi một ổ cứng được tạo ra một bản copy, một quá trình hash được thực hiện trên ổ đĩa trước khi quá trình nhân đôi được thực hiện. Nếu hai thong số hash của ổ cứng mới được tạo ra và thong số hash của ổ đĩa ban đầu thì quá trình nhân đôi dữ liệu được thực hiện chính xác và đảm bảo dữ liệu không có sự thay đổi mất mát trong quá trình nhân bản. Việc hashing sử dụng để đảm bảo dữ liệu được nguyên bản giúp dữ liệu lưu ở dạng kỹ thuật số sẽ luôn dữ được nguyên bản sau vô số lần copy – và điều này không thể thực hiện khi lưu dữ liệu các dạng khác – ví như bạn lưu thong tin âm thanh bằng băng từ sẽ bị biến dạng sau nhiều lần copy.

Ví dụ, Message Digest 5 (MD5) là một thuật toán hash với 128-bit hash. Điều này có nghĩa không có vấn đề với dữ liệu đầu vào và dữ liệu đầu ra sau quá trình hash bởi nó luôn luôn thêm vào 128 bits. Sức mạnh của quá trình hashing là nó được thực hiện một chiều và không thể có phương thức nào có thể thực hiện ngược lại được để converts thông số hash thành dữ liệu ban đầu. Nếu một vài người có được các thông số hash của bạn, họ không thể lấy được dữ liệu ban đầu. Tuy nhiên đó không phải là phương thức mật mã không thể tấn công. Hashing có thể bị tấn cong bởi các phương thức đảo ngược hay birthday attack. Phương thức tấn công bình thường sử dụng đó là sử dụng các công cụ password-cracking. Hầu hết các hệ thống lưu trữ passwords trong dữ liệu accounts và được hashed (băm). Hashs không thể thực hiện ngược lại, bởi đó là một giải pháp bảo mật, có nghĩa không có công cụ nào có thể chuyển ngược lại một password được hash thành một password nguyên bản chưa được hash. Tuy nhiên một thuật toán nào cũng có những bất cập riêng, bằng việc sử dụng các phần mềm, password crackers chúng có thể phát hiện ra đoạn mã them vào dữ liệu ban đầu và chỉ cần xoá đoạn hash value đi là có thể truy cập bình thường. Dữ liệu Account thường không được mã hoá, và dữ liệu password thường được hash do đó hầu hết các công cụ crack password chỉ có thể xoá password đã được đặt cho user đó mà không thể view password đó.

Thuật toán hashing thường được sử dụng:

Secure Hash Algorithm (SHA-1) với – 160-bit hash value

Message Digest 5 (MD5) với —128-bit hash value

Message Digest 4 (MD4) với —128-bit hash value

Message Digest 2 (MD2) với —128-bit hash value

2. Symmetric – Mã hoá đối xứng

Mật mã đối xứng cũng được gọi là mật mã private key hay mật mã secret key. Nó sử dụng một chìa khoá duy nhất để mã hoá và giải mã dữ liệu (được thể hiện dưới hình dưới). Khi một mật mã đối sứng được sử dụng cho files trên một ổ cứng, user thực hiện mã hoá với một secret key. Khi một giao tiếp được sử dụng mã hoá đối xứng, hai giao tiếp sẽ chia sẻ nhau cùng một mật mã để mã hoá và giải mã gói tin.

Ví dụ chúng ta thấy trong một file như bạn đặt password cho một file *.rar ai muốn mở phải có password (secret key). Khi giao tiếp giữa máy chủ RADIUS Server và RADIUS Client sẽ có chung một secret key mà bạn phải thiết lập.

Ví dụ trong Internet đó là giao thức SSL sử dụng mật mã đối xứng. Trong thực tế mật mã đối xứng được dung để đảm bảo tính tối mật của dữ liệu. confidentiality

Một hệ thống mã hoá đối xứng

thuat toan ma hoa

Phương thức mật mã đối xứng được thực hiện nhanh hơn rất nhiều so với quá trình sử dụng mật mã bất đối xứng. Với tốc độ nhanh nên thuật toán này được thiết kế chỉ một key trong quá trình mã hoá và giải mã dữ liệu.

Mật mã đối xứng cung cấp một giải pháp mã hoá mạnh bảo vệ dữ liệu bằng một key lớn được sử dụng. Tuy nhiên, để bảo vệ các keys này bạn luôn luôn phải lưu giữ chúng và được gọi là private key. Nếu key này bị mất hay bị lộ, khi đó sẽ không đảm bảo tính bảo mật của dữ liệu nữa. (Tương tự như nhà bạn có một chiếc chìa khoá để khoá cửa, khoá của bạn có thể rất phức tạp và không cưa nổi, nhưng điều gì sẽ xảy ra nếu kẻ trộm làm ra được một chiếc chìa khoá tương tự như vậy).

Và một tình huống khác đó là trong quá trình truyền thông tin của Key giữa các máy tính … đó cũng là một vấn đề. Để sử dụng mật mã đối xứng để mã hoá các giao tiếp giữa bạn và người khác trên internet, bạn phải chắc một điều rằng việc bảo mật quá trình truyền keys trên mạng cần phải được đảm bảo. Nếu bạn chắc chắn rằng việc truyền dữ liệu về key được đảm bảo, vậy bạn sử dụng phương thức mã hoá nào cho việc truyền key đó trên mạng. Giải pháp là key được truyền tới người khác không qua con đường internet, có thể chứa trong đĩa mềm và chuyển theo đường bưu điện, hay viết tay gửi thư… Rồi người khác và bạn sử dụng key đó để mã hoá dữ liệu và giải mã trong quá trình truyền thông tin.

Tuy nhiên bạn có thể sử dụng một giải pháp thông minh hơn đó là Public Key Infrastructure (PKI) giải pháp được sử dụng kết hợp với mật mã đối xứng trong quá trình truyền thông tin keys. Việc truyền thong tin key bằng việc sử dụng một mã hoá để truyền với sử dụng một phiên truyền thông tin duy nhất. Hiểu, sử dụng và triển khai sử dụng PKI không đơn giản và có nhiều giải pháp của nhiều nhà sản xuất khác nhau.

Mật mã đối xứng được chia làm hai dạng:

a. Block cipher

Block cipher là một giải pháp hoạt dộng chống lại sự hạn chế của dữ liệu tĩnh. Dữ liệu được chia ra thành các blocks với size cụ thể và mỗi blocks được mã hoá một cách khác nhau.

b. Stream cipher

Stream cipher là giải pháp hoạt động chống lại dữ liệu luôn luôn sử dụng một phương thức để truyền. Một vùng đệm, ít nhất bằng một block, đợi cho toàn bộ thông tin của block đó được chứa trong vùng đệm sau đó block đó sẽ được mã hoá rồi truyền cho người nhận. Một sự khác nhau cơ bản giữa dữ liệu được truyền và dữ liệu nguyên bản. Không như giải pháp sử dụng mật mã đối xứng là mỗi block được sử dụng một key khác nhau trong quá trình truyền thông tin.

Dưới đây là các giải pháp mật mã đối xứng hay sử dụng nhất:

thuat toan ma hoa

3. Asymmetric – Mật mã bất đối xứng

Mật mã bất đối xứng hay còn gọi là mã hoá sử dụng public key. Nó sử dụng một cặp key đó là public key và private key thể hiển hình dưới đây. Trong mỗi quá trình truyền thong tin sử dụng mật mã bất đối xứng chúng cần một cặp key duy nhất. Nó tạo ra khả năng có thể sử dụng linh hoạt và phát triển trong tương lai hơn là giải pháp mật mã đối xứng. Private key bạn cần phải dữ riêng và đảm bảo tính bảo mật và nó không truyền trên mạng. Public key được cung cấp miễn phí và được public cho mọi người.

Một hệ thống mã hoá sử dụng mật mã bất đối xứng.

thuat toan ma hoa

Nếu bạn sử dụng private key để mã hoá thì người nhận sẽ phải sử dụng public key của bạn để giải mã. Nếu bạn sử dụng public key của người nhận để mã hoá thì người nhận sẽ sử dụng private của họ để giải mã thong tin.

Toàn bộ các quá trình truyền thong tin bạn có thể tham khảo tại đường link trên về phương thức hoạt động của phương thức mật mã bất đối xứng.

Mật mã bất đối xứng hoạt động chậm hơn phương thức mật mã đối xứng, không phải nó mã hoá một khối lượng dữ liệu lớn. Nó thường đước sử dụng để bảo mật quá trình truyền key của mật mã đối xứng. Nó cung cấp bảo mật cho quá trình truyền thông tin bằng các dịch vụ: Authentication, Integrity, Protection, và nonrepudiation.

Phương thức mật mã bất đối xứng sử dụng:

– Rivest Shamir Adleman (RSA)

– Diffie-Hellman

– Error Correcting Code (ECC)

– El Gamal

– Message Message

Tổng kết

Trong bài viết này bạn biết về sử dụng hashing đảm bảo tính toàn vẹn của dữ liệu. Các tấn công hashing. Trong thực tế thong tin thường được hashing trước khi được mã hoá do đó tính bảo mật được tăng lên rất nhiều. Bạn cũng cần phải nắm được các phương thức mã hoá đối xứng và bất đối xứng chúng có ưu nhược điểm và sử dụng trong những trường hợp nào. Cuối cùng bạn phải biết các phương thức hashing, đối xứng, bất đối xứng hay sử dụng nhất.

(Theo Vnexperts Research Department.)

Những Website tốt nhất cho nghiên cứu Security

Những website hàng đầu về Security (bảo mật) sau sẽ giúp bạn tìm tòi vô số điều mới lạ trong những vấn đề mình quan tâm cũng như những kiến thức nền tảng vố cùng bổ ích.

WindowSecurity.com – Site cung cấp các tin nóng, các articles mới nhất liên quan đến bảo mật Windows. Các chủ đề thông tin đa dạng, chuyên biệt như firewalls, viruses, intrusion detection và các chủ đề về bảo mật rất hay khác ..

Security Forums – Cổng thông tin và diễn đàn bảo mật hàng đầu hiện nay. Bao gồm các chủ đề về OS Security, Network security. Đặc biệt các hướng dẫn chi tiết về xác định các yếu điểm của hệ thống và các cách thức để xử lý các sự cố bảo mật liên quan ..

GFISecurityLabs – GFISecurityLabs thuộc GFI, nhà cung cấp các công cụ bảo mật hàng đầu hiện nay. Các chuyên gia nghiên cứu hàng đầu tại đây đã đưa ra những dịch vụ về bảo mật miễn phí như EmailSecurityTest & EventLogScan và nhiều các chỉ dẫn, và thông tin mới nhất về bảo mật.

Computerworld’s Security Knowledge Center – Các vấn đề quan tâm nhất của các IT professionals đều xuất hiện tại website này. Đặc biệt các hướng dẫn thiết lập các hệ thống bảo mật cho các tổ chức lớn, các hướng dẫn về phân tích bảo mật cho các tổ chức vừa và nhỏ…

Firewall.cx – Nhiều thông tin từ basic đến advanced về Network, Protocols (IP, DNS, FTP, ICMP v.v..), giao thức định tuyến- Routing protocols, Ethernet, Routers, Firewalls, DMZ, Security, Subnetting, Supernetting, special sections, networking software, documents và các dự án triển khai mẩu, cho phép download.

Wilders.org – Không giới hạn về các chủ đề bảo mật. Các hướng dẫn (free) tools và services, và vô số những gì thú vị nhất về bảo mật mà bạn có thể tìm thấy tại đây …

McAfee Security – Virus Information Library – Thông tin cập nhật chi tiết về viruses, những hình thức tấn công mới nhất, những đe dọa phổ biến nhất và làm thế nào để đối phó với tất cả những vấn đế này…

Dutch Security Information Network – Website của cộng đồng các chuyên gia bảo mật và Network của Đức. Bao gốm nhiếu thông tin “sốt” nhất về bảo mật, các documents (free download), tools, và nhiều thông tin hay khác …

eBCVG.com – Cổng thông tin và diễn đàn sôi động về bảo mật. OS Security và network security là những chủ đề chính…

AuditMyPC – Kiểm tra miễn phí các hệ thống Firewall UDP và TCP cho tổ chức của bạn.

GovernmentSecurity.org – Được xem là website bảo mật hàng đầu hiện nay với lượng thông tin đồ sộ và có chất lượng về tất cả các lĩnh vực liên quan đến security và hacking.

(Theo Quantrimang)


Đấu giá trực tuyến hàng đầu Việt Nam

Bảo đảm an toàn khi sử dụng Wi-Fi công cộng

Các kết nối không dây thường không có chế độ bảo mật, máy tính của bạn dễ trở thành “mục tiêu” của những kẻ phá hoại. Vì vậy, bạn cần thực hiện một vài thao tác để đảm bảo an toàn cho máy tính trước khi “vi vu” trên mạng…
Kết nối không dây (Wi-Fi) đang dần phổ biến vì những tiện lợi của nó; bạn sẽ thấy sự hiện diện của chúng khắp nơi từ café Internet, trong trường học cho đến sân bay, khách sạn… Với thiết bị di động tích hợp card mạng không dây (máy tính xách tay, điện thoại di động, PDA, pocket PC…), bạn dễ dàng truy cập Internet với vài thao tác đơn giản.

Tuy nhiên để đảm bảo an toàn, bạn nên thực hiện vài thao tác đơn giản dưới đây.

Tắt tài khoản Guest. Để máy tính an toàn hơn, bạn nên tắt tài khoản Guest tránh người dùng đăng nhập bằng tài khoản này. Trong Windows XP, chọn Start\ Settings\ Control Panel\ User Accounts\ Guest\ Turn off the guest account.

Sử dụng tường lửa. Tường lửa kiểm soát dữ liệu ra vào máy tính và cảnh báo những hành vi đáng ngờ; là công cụ bảo vệ máy tính chống lại sự xâm nhập máy tính bất hợp pháp khi kết nối với môi trường bên ngoài.

Một số người dùng thường tắt tường lửa của Windows để tránh “phiền phức”. Tuy nhiên khi kết nối mạng công cộng, bạn nên kích hoạt lại tính năng này.

Thực hiện như sau: chọn Start\ Control Panel\ Windows Firewall\ tab General, đánh dấu tùy chọn mục On (recommend).

Đặt mật khẩu khi chia sẻ tập tin, thư mục. Người dùng sẽ được yêu cầu đăng nhập khi muốn truy cập những tập tin, thư mục chia sẻ. Nếu sử dụng Vista, HĐH sẽ điều chỉnh các thiết lập bảo mật dựa trên loại kết nối mạng của bạn. Chẳng hạn khi xác định dùng mạng công cộng, Vista tự động tắt chế độ chia sẻ tập tin và máy in để bảo vệ dữ liệu.

Thiết lập kết nối. Trước khi truy cập, bạn cần kiểm tra trạng thái hoạt động của card mạng, kích hoạt nó nếu đang ở chế độ disable.

Chọn card mạng không dây

Thị trường thiết bị mạng không dây khá sôi động với nhiều chuẩn khác nhau như 802.11a, 802.11b, 802.11g và những công nghệ mới như MIMO, Pre-N. Trong đó, chuẩn 802.11g (tốc độ 54, 108, 125 hay 300Mbps… tùy theo hãng và công nghệ tăng tốc) được người dùng ưa thích do chi phí hợp lý, kết nối ổn định và có thể sử dụng với hầu hết các điểm truy cập Wi-Fi công cộng.

Ngoài thương hiệu sản phẩm, bạn nên chọn mua các sản phẩm được chứng nhận bởi Hiệp Hội Wi-Fi (WFC) và tính tiện dụng của nó, chẳng hạn PC card chỉ dùng được với MTXT còn USB adaper có thể dùng cho cả máy tính để bàn.

Chọn Start\ Connect To\ Show all connections. Cửa sổ Network Connections sẽ liệt kê các dạng kết nối mạng của máy, nhấn phải chuột trên Wireless Network Connection và chọn Enable.

Để tiện cho việc quản lý kết nối, nhấn phải chuột trên Wireless Network Connection, chọn Properties. Đánh dấu tùy chọn vào mục “Show icon in notification area when connected”, nhấn OK. Biểu tượng Wireless Network Connection sẽ xuất hiện ở khay hệ thống.

Một số lưu ý: Một số loại laptop cho phép tắt/mở card mạng trực tiếp bằng hoặc thông qua phím tắt, bạn nên kiểm tra hay đọc tài liệu hướng dẫn của laptop để có thông tin này.

Nếu không có nhu cầu kết nối mạng, bạn nên tắt card mạng để đảm bảo an toàn và tiết kiệm điện năng. Thực hiện các thao tác như trên và chọn Disable.

Kế tiếp, chúng ta sẽ xác định các trạm phát sóng để kết nối bằng tiện ích của card mạng hoặc Wireless Network Connection của Windows.

Tiện ích của card mạng thường được tích hợp trong quá trình cài đặt trình điều khiển card mạng; nếu không, bạn có thể cài bổ sung. Khởi chạy tiện ích card mạng, chọn Scan để quét các kết nối mạng hiện hữu. Dựa vào một số thông tin hiển thị như tên mạng, chế độ mã hóa, độ nhạy của tín hiệu, số kênh, tần số hoạt động, bạn chỉ việc chọn mạng cần kết nối và Active (hình 3). Máy tính sẽ được cấp IP tự động, bạn nhận được thông báo cho biết đã kết nối thành công.

Nếu thường xuyên kết nối với mạng này, bạn nên lưu lại thông số cấu hình mạng (profile) để không phải thực hiện thao tác dò tìm cho các lần kết nối sau.

Wireless Network Connection của Windows không có khả năng phát hiện chuẩn của trạm phát sóng. Nếu không thể kết nối, bạn hãy hỏi thông tin từ người quản trị để biết chuẩn đang sử dụng.

Để kết nối, nhấn chuột phải trên biểu tượng Wireless Network Connection trong khay hệ thống, chọn View Available Wireless Networks. Các kết nối mạng sẽ xuất hiện với các thông tin như tên mạng, chế độ mã hóa (nếu có). Nếu không tìm thấy, nhấn Refresh Network List trong mục Network Tasks. Chọn kết nối thích hợp và Connect. Biểu tượng Wireless Network Connection ở khay hệ thống sẽ cho biết kết nối thành công hay không.

Trong thực tế, card mạng Wi-Fi thường chỉ tìm được trạm phát sóng có cùng chuẩn. Trường hợp sóng yếu, kết nối chập chờn hoặc không kết nối được… bạn có thể thử một trong những cách sau:

Di chuyển máy tính gần trạm phát sóng hơn, chọn tên mạng có cột sóng cao nhất (nhìn trên mục Signal Strength). Tín hiệu sóng càng mạnh cho tốc độ càng cao và ổn định.

Hướng điểm thu sóng (PC card) hay anten (anten USB nếu có) về phía trạm phát sóng.

Đổi chuẩn card mạng Wi-Fi sao cho tương thích.

(Theo Dantri điện tử)


Đấu giá trực tuyến hàng đầu Việt Nam